Gap Between Anatomy and Function: *Bifurcation Lesions*

William F. Fearon, MD Associate Professor Stanford University Medical Center

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Grant/ Research Support:

Consulting Fees/Honoraria:

Major Stock Shareholder/Equity Interest:

Royalty Income:

Ownership/Founder:

Salary:

Intellectual Property Rights:

Other Financial Benefit (minor stock options):

<u>Company</u> St. Jude Medical

Tryton Medical

HeartFlow

Limitation of Angiography

Topol and Nissen Circulation 1995;92:2333-42

Ischemia-Producing Lesion

What causes a lesion to be functionally significant?

Braunwald's Heart Disease 2005, 7th edition, vol.2, p.1112.

Disconnect between Anatomy and Physiology

Disconnect between Anatomy and Physiology

Disconnect between Anatomy and Physiology

Epicardial Coronary Pressure: *Pressure, Flow, Resistance and Vessel Size*

Courtesy of Bernard De Bruyne

IVUS cutoff is affected by vessel size

Why we need FFR for bifurcation lesions

- Angiographic evaluation is difficult due to vessel overlap, angulation, foreshortening, and stent strut artifact
- IVUS/OCT criteria for a significant sidebranch lesion are unknown and it is technically difficult to perform in some cases (particularly after stenting)
- The amount of myocardium supplied by a sidebranch is relatively small and highly variable

Koo and De Bruyne. Eurointervention 2010;6:J94-J98.

"Jailed" Side Branches

"Jailed" Side Branches

Mechanism of Side Branch "Jailing"

Carina Shifting and Plaque Shifting

Koo and De Bruyne. Eurointervention 2010;6:J94-J98.

Mechanism of Side Branch "Jailing"

Carina Shifting and Plaque Shifting

Pre-Intervention Angiographic Parameters

Angiographic	FFR<0.75	FFR≥0.75	
Parameters	(N=28)	(N=39)	Р
Main branch			
Reference diameter, mm	3.0±0.6	3.0±0.4	1
Minimal lumen diameter, mm	1.0±0.4	1.2±0.4	0.15
% diameter stenosis	65±13	61±14	0.27
Side branch			
Reference diameter, mm	2.1 ± 0.5	2.2±0.4	0.33
Minimal lumen diameter, mm	0.9 ± 0.4	1.4 ± 0.4	< 0.001
% diameter stenosis	54±20	37±18	< 0.001
Type B lesion	19 (56)	15 (44)	0.04
Bifurcation angle, degrees	44±19	46±11	0.62

Correlation between Pre PCI Angiographic DS and Post PCI SB FFR

Pre-Intervention IVUS Parameters

	FFR<0.75	FFR≥0.75	-
IVUS parameters	(N=22)	(N=30)	Р
Proximal MB			
Lumen volume index, mm ³ /mm	2.6±1.1	3.4±1.5	0.08
Vessel volume index, mm ³ /mm	13.2±3.5	12.7±3.5	0.67
Plaque volume index, mm³/mm	10.6 ± 3.1	9.4±3.1	0.21
Plaque burden, %	80±8	73±10	0.03
Distal MB			
Lumen volume index, mm ³ /mm	2.3±1.1	3.6±1.8	0.01
Vessel volume index, mm ³ /mm	8.3±2.0	9.4±2.7	0.14
Plaque volume index, mm ³ /mm	6.0±1.5	5.8±2.0	0.69
Plaque burden, %	73±10	61±12	0.002

Correlation between Pre PCI MB IVUS and Post PCI SB FFR

Summary

- Anatomic evaluation alone is insufficient to determine the physiologic significance of a coronary lesion.
- The disconnect between anatomy and function is even more pronounced in the setting of bifurcation lesions.
- FFR helps to identify functionally significant bifurcation lesions.

